

				Printed Page: 1 of				of 2	,	
				Sub	ject	Coc	le: F	RCA	103	1
Roll No:										

MCA (SEM. I) THEORY EXAMINATION 2020-21 DISCRETE MATHEMATICS

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

a.	State the Commutative and Distributive Laws of Set theory.
b.	Define the Equivalence Relation.
c.	Define the following terms (any two) with example:
	i) DNF, ii) CNF, iii) Universal Gates
d.	State the Idempotent, Involution laws of Boolean Algebra.
e.	State the Modus Ponens and Hypothetical Syllogism Inference Rules.
f.	What do you mean by Bound and Free variable with example?
g.	State Generating Function.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

a.	Show that relation "xRy iff (x-y) is divisible by 3" is an equivalence relation
	on the set of integers.
b.	Let $S = \{x, y, z\}$ and $P(S)$ be its power set. Show that $(P(S), \subseteq)$ is a Lattice.
c.	State and Prove the Associative Laws of Boolean Algebra.
d.	If $A = \{1, 2, 3, 4, 5, 6, 7, 8,\}$ Determine the truth value of each of the
	following statement
	i) $(\forall x \in)4x + 4 < 15$
	ii) $(\exists x \in A)x + 4 = 10$
	$ \nabla x \in A + 4 \le 10$
e.	An examination paper containing 12 questions consists of two parts, A and B,
	part A contains 7 questions and part B contains 5 questions. A candidate is
	required to attempt 8 questions, selecting at least 3 from each part. In how
	many ways the candidate selects the questions?

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	For any set A and B, Prove that : $P(A \cap B) = P(A) \cap P(B)$.
(b)	Define the function. And also explain the various types of functions.

				Printed Page: 2 of 2					
				Sub	ject	Cod	le: F	RCA	103
Roll No:									

4.	Attempt any	one	part of	f the	following
т.	1 ALLCOHILD C MILLY	onc	Dai t O		10110 11111

$7 \times 1 =$	= 7
----------------	-----

(a)	Define Dual Lattice. And Show that Dual of a lattice is a lattice.
(b)	If $D = \{1, 2, 4, 8, 16, 32, 64\}$ be ordered by the relation "a divides b".
	Then show that D is a Poset. Also draw the Hasse diagram.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Draw Karnaugh map (K-map) and simplify the following Boolean expression:
	$f(a,b,c,d) = \sum (0,2,6,8,10,12,14,15).$
(b)	Show that $A \oplus B = ((A.B')'.(A'.B)')'$ and hence design a logic circuit of
	XOR gate using NAND only.

6. Attempt any *one* part of the following:

$$7 \times 1 = 7$$

(a)	Show that: $(p \rightarrow q) \land (r \rightarrow q) \equiv (p \lor r) \rightarrow q$.
(b)	Construct the truth table: $((p \Rightarrow q) \lor (q \Rightarrow p)) \Leftrightarrow p$
	Is the preposition: Tautology, Contradiction or Contingency?

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Solve the following recurrence relation:
$a_n - 7a_{n-1} + 10a_{n-2} = 0$ with initial conditions $a = 0$ and $a = 3$
Explain the difference between Permutation and Combination. And solve:
Everybody in a room shakes hands with everybody else. The total number of
handshakes is 66. Find how many people are there in the room?
downloaded from Cottled Control of the Cottle